
International Journal of Theoretical Physics, Vol. 36, No. 1, 1997

Algorithmic Information and Simplicity in
Statistical Physics

Rtidiger Schack I~

Received April 2, 1996

Applications of algorithmic information theory to statistical physics rely (a) on
the fact that average conditional algorithmic information can be approximated
by Shannon information and (b) on the existence of simple states described by
short programs. More precisely, given a list of N states with probabilities 0 <
Pt -< " '" ----- PN, the average conditional algorithmic information I to specify one
of these states obeys the inequality H --< 1 < H + 0 (1) , where H = -5~ pj iog2p j
and O(1) is a computer-dependent constant. We show how any universal computer
can be slightly modified in such a way that (a) the inequality becomes H --< ! <
H + 1 and (b) s tates that are simple with respect to the original computer remain
simple with respect to the modified computer, thereby eliminating the computer-
dependent constant from statistical physics.

1. INTRODUCTION

Algorithmic information theory (Solomonoff, 1964; Kolmogoroff, 1965;
Zvonkin and Levin, 1970; Chaitin, 1987), in combination with Landauer's
principle (Landaner, 1961, 1988), which specifies the unavoidable energy
cost kBT In 2 for the erasure of a bit of information in the presence of a heat
reservoir at temperature T, has been applied successfully to a range of prob-
lems: the Maxwell demon paradox (Bennett, 1982), a consistent Bayesian
approach to statistical mechanics (Zurek, 1989a,b; Caves, 1993a,b), a treat-
ment ofirreversibility in classical Hamiltonian chaotic systems (Caves, 1993b;
Schack and Caves, 1992), and a characterization of quantum chaos relevant
to statistical physics (Caves, 1993b; Schack and Caves, 1993, 1996a,b; Schack
et al., 1994). The algorithmic information for a physical state is defined as

~Center for Advanced Studies, Department of Physics and Astronomy, University of New
Mexico, Albuquerque, New Mexico 87131-1156.

2 Present address: Department of Mathematics, Royal Holloway, University of London, Egham,
Surrey TW20 0EX, U.K.; e-mail: r.schack@rhbnc.ac.uk,

209
0020-7748/97/0100-0209512.5010 �9 1997 Plenum Publishing Corporation

210 Schack

the length in bits of the shortest self-delimiting program for a universal
computer that generates a description of that state (Zurek, 1989b; Caves,
1990). Algorithmic information with respect to two different universal com-
puters differs at most by a computer-dependent constant (Chaitin, 1987).
Although typically the latter can be neglected in the context of statistical
physics, the presence of an arbitrary constant in a physical theory is unsatisfac-
tory and has led to criticism (Denker and leCun, 1993). In the present paper,
we show how the computer-dependent constant can be eliminated from statis-
tical physics.

In the following paragraphs we give a simplified account of the role of
algorithmic information in classical statistical physics. A more complete
exposition including the quantum case can be found in Zurek (1989b) and
Caves (1993b). We adopt here the information-theoretic approach to statistical
physics pioneered by Jaynes (1983). In this approach, the state of a system
represents the observer's knowledge of the way the system was prepared.
States are described by probability densities in phase space; observers with
different knowledge assign different states to the system. Entropy measures
the information missing toward a complete specification of the system.

Consider a set of N states (N ----- 2) labeled by j = 1 N, all having
the same energy and entropy. The restriction to states of the same energy
and entropy is not essential, but it simplifies the notation. Initially the system
is assumed to be in a state in which state j is occupied with probability p~
> 0. We assume throughout that the states j are labeled such that 0 < p~ <-
�9 .. <- pu. If an observation reveals that the system is in state j, the increased
knowledge is reflected in an entropy decrease AS = --kB In 2 H, where H
= - E p~ log2pi > 0 is the original missing information measured in bits.
To make the connection with thermodynamics, we assume that there is a
heat reservoir at temperature T to which all energy in the form of heat must
eventually be transferred, possibly using intermediate steps such as storage
at some lower temperature. In the presence of this fiducial heat reservoir,
the entropy decrease AS corresponds to a free energy increase AF = -TAS
= +kBT In 2 H. Each bit of missing information decreases the free energy
by the amount k s T In 2; if information is acquired about the system, free
energy increases.

The fact that entropy can decrease through observation--which underlies
most proposals for a Maxwell demon--does not conflict with the second
law of thermodynamics, because the observer's physical state changes as a
consequence of the interaction with the system. Szilard (1929) discovered
that no matter how complicated the change in the observer's physical state,
the associated irreducible thermodynamic cost can be described solely in
terms of information. He found that in the presence of a heat reservoir at
temperature T each bit of information acquired by the observer has an energy

Algorithmic Information in Statistical Physics 211

cost at least as big as kBT In 2. Total available work is reduced not only by
missing information, but also by information the observer has acquired about
the system. The physical nature of the cost of information was clarified by
Bennett (1982), who applied Landauer's principle (Landauer, 1961, 1988) to
the Maxwell demon problem and showed that the energy cost has to be paid
when information is erased.

To keep the Landauer erasure cost of the observational record as low
as possible, the information should be stored in maximally compressed form.
The concept of a maximally compressed record is formalized in algorithmic
information theory (Chaitin, 1987). Bennett (1982) and Zurek (1989a,b) gave
Szilard's theory its present form by using algorithmic information to quantify
the amount of information in an observational record. In particular, by
exploiting Bennett's idea of a reversible computer (Bennett, 1982), Zurek
(1989a) showed how an observational record can be replaced by a compressed
form at no thermodynamic cost. This means that the energy cost of the
observational record can be reduced to the Landauer erasure cost of the
compressed form.

Let us denote by sj a binary string describing the jth state (j = 1
N). A detailed discussion of how a description of a physical state can be
encoded in a binary string is given in Zurek (1989b). The exact form of the
strings sj is of no importance for the theory outlined here, however, because
the information needed to generate a list of all the strings sj can be treated
as background information (Caves, 1990, 1993b). Background information
is the information needed to generate a list s = ((sl, Pl) (SN, PN)) of
all N states together with their probabilities; i.e., background information is
the information the observer has before the observation. This formulation
assumes that the probabilities pj are completely specified by the background
information--a natural assumption in the Bayesian approach to probabilities
(Jaynes, 1983) adopted in this paper. A generalization to approximately
specified probabilities is discussed in Bennett (1982).

Algorithmic information is defined with respect to a specific universal
computer U. We denote by Iv (syl s) the conditional algorithmic information,
with respect to the universal computer U, to specify the jth state, given the
background information (Chaitin, 1987; Zurek, 1989b; Caves, 1990). More
precisely, Iv(sjl s) is the length in bits of the shortest self-delimiting program
for U that generates the string sj, given a minimal self-delimiting program
to generate s. For a formal definition of a universal computer U and of
lv(sjls) see Section 2. It should be emphasized that a minimal program that
generates the list s of descriptions of all states and their probabilities can be
short even when a minimal program that generates the description sj of a
typical single state is very long (Zurek, 1989b).

212 Schack

Since total available work is reduced by kBT In 2 by each bit of informa-
tion the observer acquires about the system as well as by each bit of missing
information, the change in total free energy or available work upon observing
state j can now be written as

AFj,to t = - - T [A S + kB In 2 Iv(sils)]

= - kBTln 2 [- H + Iv(syls)] (1)

This definition of total free energy is closely related to Zurek's definition of
physical entropy (Zurek, 1989b). Average conditional algorithmic information
Iv(" Is) = E pjlv(sjls) obeys the double inequality (Zurek, 1989b; Caves,
1990)

H <- IV(" Is) < H + O(1) (2)

where O(1) denotes a positive computer-dependent constant (Chaitin, 1987).
It follows immediately that the average change in total free energy, AFtot =
E piAFj.tot, is zero or negative:

0 >-- AFtot > -O(1)kaT In 2 (3)

The left side of this double inequality establishes that acquiring information
cannot increase available work on the average. For standard choices for the
universal computer U, e.g., a Turing machine or Chaitin's LISP-based univer-
sal computer (Chaitin, 1987), the computer-dependent O(1) constant on the
right is completely negligible in comparison with thermodynamic entropies.
Condition (3) therefore expresses that on the average, with respect to a
standard universal computer, total free energy remains essentially unchanged
upon observation. Despite the success of this theory, the presence of an
arbitrary constant is disturbing. To understand the issues involved in removing
the arbitrary constant, we must introduce the notions of simple and com-
plex states.

Although the average information IV(- I s) is greater than or equal to H,
there is a class of low-entropy states that can be prepared without gathering
a large amount of information. For example, in order to compress a gas into
a fraction of its original volume, free energy has to be spent, but the length
in bits of written instructions to prepare the compressed state is negligible
on the scale of thermodynamic entropies. States that can be prepared reliably
in a laboratory experiment usually are simple states, which means that there
is a short verbal description of how to prepare such a state.

The concept of a simple state is formalized in algorithmic information
theory. A simple state is defined as a state for which lv(sjls) < < H; i.e.,
descriptions for simple states can be generated by short programs. The total
free energy increases, in the sense of equation (1), upon observing the system

Algorithmic Information in Statistical Physics 213

to be in a simple state. Simplicity is a computer-dependent concept. Standard
universal computers like Turing machines reflect our intuitive notion of
simplicity. It is easy, however, to define a universal computer for which there
are no short programs at all; such a computer would not recognize simplicity.

Intuitively, simplicity ought to be an intrinsic property of a state. A
computer formalizing the intuitive concept of simplicity should reflect this.
In particular, for such a computer a simple state should have a short program
independent of the probability distribution Pl PN. This is not true for
all universal computers. In Section 2 we introduce a universal computer U,
for with Iu~(sjls) is determined solely by the probabilities pl PN. For
this computer, a short program for the jth state reflects a large probability
pj, not an intrinsic property of the state. We will say that such a computer
does not recognize intrinsically simple states.

Simple states are rare--there are fewer than 2 n statesj for which Iu(sjl s)
< n (Chaitin, 1987)--and thus arise rarely as the result of an observation,
yet they are of great importance. Simple states are states for which the
algorithmic contribution to total free energy is negligible. The concept of
total free energy does not conflict with conventional thermodynamics because
thermodynamic states are simple. If the theory does not have the notion of
simple states, the connection with conventional thermodynamics is lost.

The opposite of a simple state, a complex state, is defined as a state for
which l ~ s j l s) is of the same order as H. Complex states arise not just through
Maxwell demon-like observations. We have shown (Caves, 1993b; Schack
and Caves, 1992, 1993, 1996a, b; Schack et al., 1994) that initially simple
states of chaotic Hamiltonian systems in the presence of a perturbing environ-
ment rapidly evolve into extremely complex states (Caves, 1993a,b) for which
the negative algorithmic contribution to total free energy is vastly bigger
than H and thus totally dominates conventional free energy. In addition to
giving insight into the second law of thermodynamics, this result leads to a
new approach to quantum chaos (Caves, 1993b; Schack and Caves, 1993,
1996a; Schack et al., 1994).

In this paper, we show how the computer-dependent O(1) constant can
be eliminated from the theory summarized above. In Section 2 we construct
an optimal universal computer for which the O(1) constant is minimal. It turns
out, however, that optimal universal computers do not recognize intrinsically
simple states and thus are unsatisfactory in formulating the theory. This
difficulty is solved in Section 3, where we show that any universal computer
U can be modified in a simple way such that (a) any state that is simple with
respect to U is also simple with respect to the modified universal computer
U3 and (b) average conditional information with respect to U3 exceeds average
conditional information with respect to an optimal universal computer by at
most 0.5 bit. Moreover, conditional algorithmic information with respect to

214 Schack

the modified computer U 3 obeys the inequality H --- ~ < H + 1. This
double bound is the tightest possible in the sense that there is no tighter
bound that is independent of the probabilities pj.

2. AN OPTIMAL UNIVERSAL COMPUTER

The idea of an optimal universal computer is motivated by Zurek's
discussion (Zurek, 1989b) of Huffman coding (Huffman, 1952) as an alterna-
tive way to quantify the information in an observational record. We consider
only binary codes, for which the code words are binary strings. Before
reviewing Huffman coding, we need to formalize the concept of a list con-
sisting of descriptions of N states together with their probabilities.

Definition 1. A list o f states s is a string of the form s = ((sb Pl)
(sN, PN)), where N --> 2, 0 < Pl -< "'" -< PN, E pj = 1, and sj is a binary
string (j = 1 N). More precisely, the list of states s is the binary string
obtained from the list ((st, P0 (sN, PN)) by some definite translation
scheme. One possible translation scheme is to represent parentheses, commas,
and numbers (i.e., the probabilities pj) in ascii code, and to precede each
binary string sj by a number giving its length I sjl in bits. The entropy of a
list of states is H(s) = - ~ pj log2Pj. Throughout this paper, I tl denotes the
length of the binary string t.

The Huffman code for a list of states s = ((sl, Pl) (sN, PN)) is a
prefix-free or instantaneous code (Welsh, 1988)--i.e., no code word is a prefix
of any other code word--and can, like all prefix-free codes, be represented by
a binary tree as shown in Fig. 1. The number of links leading from the root

q' / - Pl q8 = P2 q9 = P3 qlO = P4

0 1 0 1

q3 q4 = P5 q5 = P6 q6

0 1 0 1

root
Fig. 1. Binary tree representing the Huffman code for six states with probabilities Pt P6.
The node probabilities qk are defined recursively, i.e., q7 = P~, q8 = P2, q3 = q7 + qs, etc.
Code words correspond to branch labels; e.g., the code word for the third state (probability
P3) is 110.

Algorithmic Information in Statistical Physics 215

of the tree to a node is called the level of that node. If the level-n node a is
connected to the level-(n + 1) nodes b and c, then a is called the parent of
b and c; a's children b and c are called siblings. There are exactly N terminal
nodes or leaves, each leaf corresponding to a state j. Each link connecting
two nodes is labeled 0 or 1. The sequence of labels encountered on the path
from the root to a leaf is the code word assigned to the corresponding state.
The code-word length of a state is thus equal to the level of the corresponding
leaf. Each node is assigned a probability q~ such that the probability of a
leaf is equal to the probability pj of the corresponding state and the probability
of each nonterminal node is equal to the sum of the probabilities of its children.

A binary tree represents a Huffman code if and only if it has the sibling
property (Gallager, 1978), i.e., if and only if each node except the root has
a sibling, and the nodes can be listed in order of nonincreasing probability
with each node being adjacent to its sibling in the list. The tree corresponding
to a Huffman code and thus the Huffman code itself can be built recursively.
Create a list of N nodes corresponding to the N states. These N nodes will
be the leaves of the tree that will now be constructed. Repeat the following
procedure until the tree is complete: Take two nodes with smallest probabili-
ties and make them siblings by generating a node that is their common parent;
replace in the list the two nodes by their parent; label the two links branching
from the new parent node by 0 and 1.

The procedure outlined above does not define a unique Huffman code
for the list of states s, nor does it give generally a unique set of code-word
lengths. In the following, we will assume that we are given some definite
algorithm to assign a Huffman code where the freedom in the coding procedure
is used to assign to the first state (the one with smallest probability) a code
word of maximum length consisting only of zeros.

Definition 2. Given a list of states s = ((Sl, Pl) (SN, PN)), the binary
string cj(s) with length lj(s) =- I cj(s) I denotes the Huffman code word assigned
to the j th state using a definite algorithm with the property that Cl(S) = 0
�9 .. 0 and li(s) <-- ll(S) for j = 2 N. We denote the average Huffman
code-word length by l(s) =]~ pjlj(s). The redundancy r(s) of the Huffman
code is defined by r(s) = l(s) - H(s).

The redundancy r(s) obeys the bounds 0 --< r(s) < 1, corresponding
to bounds

H(s) <-- l(s) < H(s) + 1 (4)

for the average code-word length. Huffman coding is optimal in the sense
that there is no prefix-free binary code with an average code-word length
less than i(s). There can be, however, optimal prefix-free codes that are not
Huffman codes.

216 Schack

The length lj (s) of the Huffman code word cj (s) cannot be determined
from the probability pj alone, but depends on the entire set of probabilities Pl,
. . . . ps. The tightest general bounds for lj(s) are (Katona and Nemetz, 1976)

1 <-- lj(s) < -log~ Pi + 1 (5)

where g = (x/5 + 1)/2 is the golden mean. The code-word length for some
states j thus can differ widely from the value -log2 pj. For most states j,
however, the Huffman code-word length is lj(s) ~- -log2 pj. The following
theorem (Schack, 1994) is a precise version of this statement.

Theorem 1. (a) P m = Ej~tm Pj < 2-% where Im= {illi(s) < -log2 Pi
-- m}, i.e., the probability that a state with probability p has Huffman code-
word length smaller than -log2 p - m is less than 2 -m. (This is true for any
prefix-free code.) (b) P~ = Ej~t~ Pi < 2-~('-2)+2, where I~ = {illi(s) >
-log2 pi + m} and c = (1 - log2 g)-t _ 1 ~- 2.27, i.e., the probability that
a state with probability p has Huffman code-word length greater than -log2
p + m is less than 2 -c(m-2)+2.

Proof. See Schack (1994). �9

The probability of encountering a state j with a Huffman code word
much longer than -log2 pj is therefore exponentially small. There are alterna-
tive coding schemes that avoid these long code words altogether at the
cost of slightly increasing the average code-word length; one such scheme,
Shannon-Fano coding, is discussed in Zurek (1989b). In the present paper,
we use Huffman coding for specificity.

Suppose that one characterizes the information content of a state j by
its Huffman code-word length lj (s). Then in condition (2) average algorithmic
information Iv(" Is) is replaced by average code-word length l(s), the O(1)
constant is replaced by 1, and condition (3) assumes the concise form 0 >-
AFtot > - k a T In 2. This way of eliminating the O(1) constant, however,
has a high price. Since Huffman code-word lengths depend solely on the
probabilities Pl pro--states with high probability are assigned shorter
code words than states with low probability--Huffman coding does not
recognize intrinsically simple states. This means that one of the most appealing
features of the theory is lost, namely that the Landauer erasure cost associated
with states that can be prepared in a laboratory is negligible.

In the present paper we show that it is possible to retain this feature of
the theory, yet still eliminate the computer-dependent constant. We first
attempt to do this by constructing an optimal universal computer, i.e., a
universal computer for which the O(1) constant in condition (2) is minimal. We
find, however, that optimal universal computers do not recognize intrinsically
simple states either. A solution to this problem will be given in Section 3,
where we discuss a class of nearly optimal universal computers.

Algorithmic Information in Statistical Physics 217

We will need precise definitions of a computer and a universal computer,
which we quote from Chapter 6.2 in Chaitin (1987).

Definition 3. A computer C is a computable partial function that carries
a program string p and a free data string q into an output string C(p, q) with
the property that for each q the domain of C(., q) is a prefix-free set; i.e., if
C(p, q) is defined andp is a proper prefix o fp ' , then C(p', q) is not defined.
In other words, programs must be self-delimiting. U is a universal computer
if and only if for each computer C there is a constant sim(C) with the
following property: if C(p, q) is defined, then there is a p ' such that U(p',
q) = C(p, q) and Ip'l -< Ipl + sim(C).

In this definition, all strings are binary strings, and I pl denotes the
length of the string p as before. The self-delimiting or prefix-free property
entails that for each free data string q, the set of all valid program strings
can be represented by a binary tree.

For any binary string t we denote by t*(U) (or just t* if no confusion
is possible) the shortest string for which U(t*, A) = t, where A is the empty
string; i.e., t* is the shortest program for the universal computer U to calculate
t. If there are several such programs, we pick the one that is first in lexico-
graphic order. This allows us to define conditional algorithmic information.

Definition 4. The conditional algorithmic information lv(tl I t2) to specify
the binary string tl, given the binary string t2, is

Iv(t11 t2) = min I p I (6)
p l V~p,t~)=q

In words, Iu(tl I tz) is the length of a shortest program for U that computes
fi in the presence of the free data string t~'. In particular, the conditional
algorithmic information lv(sy I s) to specify the j th state, given a list of states
s = ((sb Pl) (SN, PN)), is

IV(Sj I S) = min I p I (7)
p l U(p,s*)=sj

The average of Iv(syls) is denoted by IV(. I s) = 2~ pjlv(sjls).
The next theorem puts a lower bound on the average information.

Theorem 2. For any universal computer U and any list of states s =
((sl, P0 (SN, PN)), the average conditional algorithmic information obeys
the bound

Iv(" Is) - H(s) + r(s) + Pl (8)

Proof. We denote by sj a shortest string for which U(sj, s*) = sj. The
N strings s} form a prefix-free code. If the N strings s} are represented by

218 Schack

the leaves of a binary tree, then there is at least one node that has no sibling.
Otherwise U(p, s*) would be defined only for a finite number N of programs
p, and U would not be a universal computer. Let us denote by ~ a sibling-
free node and by q its probability (q - P0. Then a shorter prefix-free code
{sj'} can be obtained by moving node ~ down one level. More precisely, for
states j corresponding to leaves of the subtree branching from node 9+, sj' is
obtained from s] by removing the digit corresponding to the link between
node ~ and its parent; for all other states j , sj' = sj. The code-word lengths
of the new code are I sj' I = I s} I - 1 if statej is a leaf of the subtree branching
from node ~ and I s~'l = I S;I otherwise. Since the new code is prefix-free,
its average code-word length is greater than or equal to the Huffman code-
word length l(s). It follows that

l ~ . l s) = ~_~pjls'il = ~ p j t s j ' l + q >-- l(s) + Pl
J J

= H(s) + r(s) + Pl (9)

which proves the theorem. �9

We can now proceed to define an optimal universal computer.

Definition 5. U is an optimal universal computer if there is a constant
e > 0 such that for all lists of states s = ((st, Pi) (SN, PN)) with Pt -----

the average conditional algorithmic information has its minimum value

Iu(" Is) = H(s) + r(s) + Pt (10)

Theorem 3. For any r > 0 there is an optimal universal computer U,.

Proof Let U be an arbitrary universal computer and ~ > 0. For any list
of states s = ((sl, Pl), - . - , (SN, PN)) with Pl >-- ~ we define c~(s) = Cl(S) o
1 = 0 - - . 01 and cj (s) = cj(s) for j = 2 N, where o denotes concatenation
of strings. The strings cj (s) thus differ from the Huffman code cj(s) in that
a 1 has been appended to the code word for the state j = 1. According to
condition (5), ll(s) + 1 <- No -- L-logg ~ + 2/, where g = (v/5 + 1)/2 and
[.xJ denotes the largest integer less than or equal to x. We denote by o'0 a
string composed of No zeros; none of the strings cj (s) is longer than tro.

For the definition of U~(p, q) we distinguish two cases. If the binary
string q is of the form

q = a00qs with U(qs, A) = s (11)

for some list of states s = ((Sl, P0 (SN, PN)) with Pt >- ~, then U,(p,
q) is defined for

Algorithmic Information in Statistical Physics 219

with

and

p ~ D(q) ---- {O'o ~ p ' l U(p' , q) is defined}

U {cj(s) l 1 <--j-----N} (12)

U~(cro ~ p ' , q)

= U(p', q) whenever U(p' , q) is defined (13)

U,(cj (s), q) = sj for j = t N (14)

If the binary string q is not of the form (11), then U~(p, q) is defined for

p ~ D(q) -- {O'o ~ p ' I U(p' , q) is defined} (15)

with

U,(cro o p' , q) = U(p', q) whenever U(p', q) is defined (16)

In both cases, the set D(q), which is the domain of U,(., q), is clearly prefix-
free. Moreover, since U~(cr o o p, q) = U(p, q) whenever U(p, q) is defined
and U is a universal computer, U~ is also a universal computer, with the
simulation constant sim(C) increased by No.

For any string t the minimal program on U~--i.e., the shortest program
given an empty free data str ing--is t*(U,) = % o t*(U), where t*(U) is the
minimal program for t on U. In particular, the shortest program for U, to
compute s is s*(U,) = cr0 o s*(U). Since U,(c] (s), s*(U,)) = sj and I c] (s) l
<- No fo r j = 1 N, while Ipl --> No for all other programs p ~ D(s*(U~)),
it follows immediately that

tv~(sjls) = Icj(s)l = Icj(s)l + ~lj = ly(s) + ~tj (17)

and thus that

= ~_~pjlu,(sjls) = ~ , p j l c j (s) l = ~ ,p j l c j (s) + p~

=l(s)+pl =H(s)+ r(s) + p n �9 (18)

If U(qs, A) = U~(cr 0 o q,,, A) = s, i.e., if qs is a program for U generating
a list of states s, the programs p for which U~(p, ~ro ~ qs) is defined can be
represented by a binary tree similar to Fig. 2. With respect to the binary tree
representing the Huffman code (Fig. 1), the leaf for the j = 1 state has been
moved up one level to make room for the new node labeled by U. This new
node leads to a subtree representing all programs p ' for which U(p', tro o qs)
is defined.

220 Schack

u qT'P:

0~\~ q8 = P2 q9 = P3 qto = P4

o,, , =

root
Fig. 2. Binary tree representing all valid programs for the optimal universal computer UE in
the presence of a free data string generating a list o f states ((sl, Pt) (S6, P6)). With respect
to the tree in Fig. 1, the node labeled q7 = Pt has been moved up one level to make room for
the subtree representing programs for U.

The operation of the optimal universal computer U~ can be described
in the following way. When U, reads a string that begins with No zeros from
its program tape, U~ disregards the No zeros and interprets the rest of the
string as a program for the universal computer U, executing it accordingly.
If U, encounters the digit 1 while reading the first No digits from its program
tape, U~ interrupts reading from the program tape, reads in the free data
string, and executes it. If the result of executing the free data string is a list
of states s = ((sb Pl) (SN, PN)), U~ establishes the modified Huffman
code {c] (s)} for s, continues reading digits from the program tape until the
string read matches one of the code words, say c]0(s), and then prints the
string Sjo. The output of U~ is undefined in all other cases.

Since r(s) + p] < 1 (Gallager, 1978), H(s) <- I~" Is) < H(s) + 1
for any optimal universal computer U. For the particular optimal universal
computer U, defined in the proof of Theorem 3, however, the information
Iu,(sjl s) is completely determined by the Huffman code-word length for the
jth state and therefore is completely determined by the probabilities Pl
PN. This optimal universal computer does not recognize intrinsically simple
states. As an aside, note that U, cannot give a short description of the
background information for any probability distribution, because a minimal
program for computing the list of states s on U~ must begin with No zeros.
It turns out that all optimal universal computers, not just U~, are unable to
recognize intrinsically simple states. The following theorem formulates this

Algorithmic Information in Statistical Physics 221

inability for all optimal universal computers in a slightly weaker form than
holds for U,. As a consequence, the use of algorithmic information with
respect to an optimal universal computer to quantify the information in an
observational record presents no advantage over the use of Huffman coding.

Theorem 4. For any optimal universal computer U and any list of states
s = ((st, Pl) (SN, PN)) for which lu(" Is) = H(s) + r(s) + Pt, the
following holds: If pi > pj, then ltj(si l s) <- I~sj l s). Optimal universal comput-
ers therefore do not recognize intrinsically simple states.

Proof To prove the theorem, we show that lu(" Is) > H(s) + r(s) + Pt
for any universal computer U and any list of states s = ((st, Pl) (su,
PN)) for which there are indices i and j such that Pi > Pj but lu(sils) >
lu(sjIs). We denote by sj a shortest string for which U(sj, s*) = sj. The
strings sj form a prefix-free code. Following an argument similar to the proof
of Theorem 2, we can shorten that code on the average by moving a sibling-
free node one level down and in addition by interchanging the code words
for states i and j. The resulting shorter code must obey the Huffman bound,
from which the inequality lu(" Is) > l(s) + Pl = H(s) + r(s) + Pl follows. �9

3. PRESERVING SIMPLE STATES BY GIVING UP 1/2 BIT

Although the discussion in the last section shows that optimal universal
computers present no advantages over Huffman coding, the main idea behind
their construction can be further exploited. If the subtree representing the
programs for the universal computer U is not attached next to the j = 1 leaf
as in Fig. 2, but instead is attached close to the root as in Fig. 3, the resulting
universal computer U3 combines the desirable properties of Huffman coding
and the computer U. This is the content of the following theorem.

Theorem 5. For any universal computer U there is a universal computer
U3 such that

lu3(t~ lt2) <-- lu(t~ ltz) + 3 (19)

for all binary strings tl and t2, and that

n(s) <- ~ Is) < n(s) + 1 (20)

and

<-- H(s) + r(s) + 1/2 (21)

for all lists of states s = ((st, P0 (SN, PN)).

Proof. Let U be an arbitrary universal computer. For any list of states
s = ((sb Pl) (SN, PN)) we define the set of strings c] (s) as follows. We

222 Schack

q-/= Pl q8 = P2
\ ?

U U' 0 0 ~ ~ 1 q4=p 5 99--P 3 910 =

o', 11 oN /i o \ / I
' \~, , , /X~/ql q57 p6 X~q 6

- , o \ / 0~'~ ~ //1/1

q2

root
Fig. 3. Binary tree representing all valid programs for the universal computer U3 in the presence
of a free data string generating a list of states s = ((st, Pt) (s6, P6)). With respect to the
tree in Fig. 1, the ievei-I node labeled qt has been moved up one level to make room for the
subtrees representing programs for U. More precisely, the binary tree represents the programs
p for which U3(p, 000 o qs) is defined if/.13(000 o qs, A) = s. The node labeled U is the root
of a subtree corresponding to the programs p ' for which U(p', 000 o qs) is defined, and the
node labeled U' is the root of a subtree corresponding to the programs p ' for which U(p', q,)
is defined.

start from the binary tree formed by the Huffman code words cj(s), where
we denote by ql the probability of the level-1 node connected to the root by
the link labeled 0 (see Fig. 1). According to the value of ql, we distinguish
two cases. In the case ql <-- 1/2, cj (s) = 01 o c f (s) if cj(s) is of the form
cj(s) = 0 o c f (s), and c~ (s) = cj(s) if cj(s) is of the form cj(s) = 1 o
c~ (s). In the case ql > 1/2, c] (s) = 01 o cj + (s) if cj(s) is of the form cj(s)
= 1 o c~(s) , and c~(s) = 1 o c~(s) if cj(s) is of the form cj(s) = 0 o c~(s) .

Figure 3 illustrates the binary tree formed by the code words c](s) for
the case ql -< 1/2. Of the two main subtrees emerging from the level-1 nodes
in Fig. 1, the subtree having smaller probability is moved up one link and
attached to the node labeled 01, and the subtree having larger probability
is attached to the node labeled 1. In this way, the node labeled 00 is freed
for the subtrees representing the valid programs for U.

For the definition of U3(p, q) we distinguish three cases. If the binary
string q is of the form

q = 000 o qs with U(qs, A) = s (22)

for some list of states s = ((st , Pl) (SN, PN)), then U3(p, q) is defined for

Algorithmic Information in Statistical Physics 223

with

and

p ~ D(q) =-- {000 o p' I U(p', q) is defined}

U {001 o p' t U(p', q~) is defined}

U {cj(s)l 1 -<j -< N}

U3(000 o p ' , q)

= U(p', q)

U3(O01 o p ' , q)

= U(p', qs)

whenever U(p', q) is defined

(23)

(24)

and

with

/./3(000 o p ' , q)

= U(p', q) whenever U(p', q) is defined

U3(001 o p ' , q)

= U(p', q') whenever U(p', q') is defined (30)

Finally, if q is not of the form (27), then U3(p, q) is defined for

p E D(q) - {000 o p ' l U (p ' , q) is defined} (31)

with

prefix-free. Moreover, since U3(000 o p, q) = U(p, q) whenever U(p, q) is

(29)

U3(000 o p ' , q)

= U(p', q) whenever U(p', q) is defined (32)

In all three cases, the set D(q), which is the domain of U3(', q), is clearly

U3(cj(s), q) = sj for j = 1 N (26)

If the binary string q is of the form

q = 000 o q' (27)

but there is no list of states s such that U(q', A) = s, then U3(p, q) is defined for

p ~ D(q) -- {000 o p ' l U(p', q) is defined}

U {001 o p ' l U(p', q') is defined} (28)

whenever U(p', qs) is defined (25)

224 Schack

defined and U is a universal computer, U3 is also a universal computer, with
the simulation constant sim(C) increased by 3. Equation (19) holds because
of the following. The minimal program for t2 on U3 in the presence of an
empty free data string is t~'(U3) = 000 o t~t(U) since U3(p, A) is defined
only if p = 000 o p ' and U(p', A) is defined, in which case U3(p, A) =
U(p', A). I fp is a minimal program for tt on U in the presence of the minimal
program for t2, i.e., if

then

and therefore

U(p, t~'(U)) = tl, Ipl = Iu(tl lt2)

s o p, t~(U3)) = /-/3(001 o p, 000 o t~'(U))

= U(p, t~(U)) = tl

(33)

(34)

Iu3(t~lt2) <-- 1001 opl = Ipl + 3 (35)

The strings c](s) form a prefix-free code with an unused code word of
length 2, for which ~ pjlcj(s)l < n(s) + 1 according to Theorem 3 in
Gallager (1978). [In Gallager (1978) the inequality appears with a <- sign,
but equality can occur only if the smallest probability p~ is equal to zero, a
case we have excluded.] The shortest program for U3 to compute s is s*(U3)
= 000 o s*(U), where s*(U) is the shortest program for U to compute s.
Since U3(c](s), s*(U3)) = sj for j = 1 N, it follows immediately that
lu3(sj I s) --< I c] (s) I and thus that

= ~pj le3(s j ls) <-- ~p j lc] (s) l < H(s) + 1 (36)

which establishes the upper bound in condition (20). The lower bound in
(20) holds for all universal computers. Equation (21) follows from

~ pjlcj(s)l = ~ pjlcj(s)l + min(ql, 1 - q0

= i(s) + min(ql, 1 - ql)

<--H(s)+r(s) + 1/2 �9 (37)

If U(qs, A) = s o qs, A) = s, i.e., if qs is a program for U generating
a list of states s, the programs p for which U3(p, 000 o q,) is defined can be
represented by a binary tree similar to Fig. 3. The level-3 node labeled U is
the root of a subtree corresponding to the programs p ' for which U(p', 000
o q~) is defined, and the level-3 node labeled U' is the root of a subtree
corresponding to the programs p' for which U(p', q,) is defined.

The operation of the universal computer /33 can be described in the
following way. When/-/3 reads a string that begins with the prefix 000 from

Algorithmic Information in Statistical Physics 225

its program tape, U3 disregards the prefix and interprets the rest of the string
as a program for the universal computer U, executing it accordingly. When
Us reads a string that begins with the prefix 001 from its program tape, the
output is only defined if the free data string begins with 000, in which case
U3 disregards the first three digits of the program and free data strings and
interprets the rest of the strings as program and free data strings for the
universal computer U, executing it accordingly. If U3 encounters the digit 1
while reading the first two digits from its program tape, U3 interrupts reading
from the program tape, reads in the free data string, and executes it. If the
result of executing the free data string is a list of states s = ((sb Pt)
(ss, ,oN)), U3 establishes the modified Huffman code {c](s)} for s, continues
reading digits from the program tape until the string read matches one of the
code words, say C]o(S), and then prints the string sj0. The output of U3 is
undefined in all other cases.

The computer U3 compromises between the desirable properties of algo-
rithmic information and Huffman coding. Since algorithmic information
defined with respect to U3 exceeds algorithmic information relative to U by
at most 3 bits, states that are simple with respect to U are simple with respect
to U3. Those 3 bits are the price to pay for a small upper bound on average
information. The average conditional algorithmic information ~ obeys
the close double bound (20) and exceeds the Huffman bound l(s) by at most
0.5 bit. This half bit is the price to pay for the recognition of intrinsically
simple states.

4. CONCLUSION

We have shown that any universal computer U can be modified in such
a way that (i) the modified universal computer U3 recognizes the same
intrinsically simple states as U and (ii) average algorithmic information with
respect to Us obeys the same close double bound as Huffman coding, H(s)
--< lu3(" I s~ < H(s) + 1. If for any choice of a universal computer U, total
free energy is defined with respect to the corresponding modified universal
computer U3, i.e., if the change of total free energy due to finding the system
in the jth state is AFj, tot= -kaT In 2 [-H(s) + lus(sjls)], then the bounds
for the average change in total free energy are given by

0 -> AFtot > -kBT In 2 (38)

instead of by (3).
This result effectively eliminates the undetermined computer-dependent

constant from applications of algorithmic information theory to statistical
physics. Except for an unavoidable loss due to the coding bounded by kaT
In 2, on the average available work is independent of the information the

226 Schaek

observer has acquired about the system, any decrease of the stat ist ical entropy
being ba lanced by an equal increase in a lgor i thmic information.

A C K N O W L E D G M E N T

The author wishes to thank Carl ton M. Caves for suggest ing the p rob lem
and for many enl ightening discussions.

R E F E R E N C E S

Bennett, C. H. (1982). International Journal of Theoretical Physics, 21, 905.
Caves, C. M. (1990). In Complexity, Entropy, and the Physics of Information, W. H. Zurek,

ed., Addison-Wesley, Redwood City, California, p. 91.
Caves, C. M. (1993a). Physical Review E, 47, 4010.
Caves, C. M. (1993b). In Physical Origins of Time Asymmetry, J. J. HalliweU, J. P&ez-Mercader,

and W. H. Zurek, eds., Cambridge University Press, Cambridge, p. 47.
Chaitin, G. J. (1987). Algorithmic Information Theory, Cambridge University Press, Cambridge.
Denker, J. S., and leCun, Y. (1993). In Workshop on Physics and Computation: PhysComp

'92, IEEE Computer Society Press, Los Alamitos, California, p. 122.
Gallager, R. G. (1978). IEEE Transactions on Information Theory, 11"-24, 668.
Huffman, D. A. (1952). Proceedings IRE, 40, 1098.
Jaynes, E. T. (1983). In Papers on Probability, Statistics, and Statistical Physics, R. D. Rosen-

krantz, ed., Kluwer, Dordrecht, Holland.
Katona, G. O. H., and Nemetz, T. O. H. (1976). IEEE Transactions on Information Theory,

IT-22, 337.
Kolmogoroff, A. N. (1965). Problemy Peredachi lnformatsii, 1, 3 [Problems of Information

Transmission, 1, 1 (1965)].
Landauer, R. (1961). IBM Journal of Research and Development, 5, 183.
Landauer, R. (1988). Nature, 355, 779.
Schack, R. (1994). IEEE Transactions on Information Theory, II'-40, 1246.
Schack, R., and Caves, C. M. (1992). Physical Review Letters, 69, 3413.
Schack, R., and Caves, C. M. (1993). Phy.~'ical Review Letters, 71, 525.
Schack, R., and Caves, C. M. (1996a). Physical Review E, 53, 3257.
Schack, R., and Caves, C. M. (1996b). Physical Review E, 53, 3387.
Schaek, R., D'Ariano, G. M., and Caves, C. M. (1994). Physical Review E, 50, 972.
Solomonoff, R. J. (1964). Information and Control, 7, I.
Szilard, L. (1929). Zeitschriftf~r Physik, 53, 840.
Welsh, D. (1988). Codes and Cyptography, Clarendon Press, Oxford.
Zurek, W. H. (1989a). Nature, 341, 119.
Zurek, W. H. (1989b). Physical Review A, 40, 4731.
Zvonkin, A. V., and Levin, L. A. (1970). Uspekhi Matematicheskikh Nauk 25, 85 [Russian

Mathematical Surveys, 25, 83 (1970)].

